Domination with exponential decay
نویسندگان
چکیده
Let G be a graph and S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) − S, we define d(u, v) = d(v, u) to be the length of a shortest path in 〈V (G)−(S−{u})〉 if such a path exists, and∞ otherwise. Let v ∈ V (G). We define wS(v) = ∑ u∈S 1 2d(u,v)−1 if v 6∈ S, and wS(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have wS(v) ≥ 1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe(G) ≥ (d + 2)/4, and, (ii) that if G is a connected graph of order n, then γe(G) ≤ 25(n + 2).
منابع مشابه
Exponential Domination in Subcubic Graphs
As a natural variant of domination in graphs, Dankelmann et al. [Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduced exponential domination, where vertices are considered to have some dominating power that decreases exponentially with the distance, and the dominated vertices have to accumulate a sufficient amount of this power emanating from the dominating vertice...
متن کاملOn exponential domination and graph operations
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
متن کاملGeneral equation for Zeno-like effects in spontaneous exponential decay
It was shown that different mechanisms of perturbation of spontaneous decay constant: inelastic interaction of emitted particles with particle detector, decay onto an unstable level, Rabi transition from the final state of decay (electromagnetic field domination) and some others are really the special kinds of one general effect — perturbation of decay constant by dissipation of the final state...
متن کاملOn Exponential Domination of Cm × Cn
An exponential dominating set of graph G = (V,E) is a subset D ⊆ V such that ∑ w∈D( 1 2 )d(v,w)−1 ≥ 1 for every v ∈ V, where d(v, w) is the distance between vertices v and w. The exponential domination number, γe(G), is the smallest cardinality of an exponential dominating set. Lower and upper bounds for γe(Cm × Cn) are determined and it is shown that limm,n→∞ γe(Cm×Cn) mn ≤ 1 13 . Two connecti...
متن کاملGenerating cosmological perturbations with mass variations
We study the possibility that large scale cosmological perturbations have been generated during the domination and decay of a massive particle species whose mass depends on the expectation value of a light scalar field. We discuss the constraints that must be imposed on the field in order to remain light and on the annihilation cross section and decay rate of the massive particles in order for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009